New mixed Moore graphs and directed strongly regular graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New mixed Moore graphs and directed strongly regular graphs

A directed strongly regular graph with parameters (n, k, t, λ, μ) is a k-regular directed graph with n vertices satisfying that the number of walks of length 2 from a vertex x to a vertex y is t if x = y, λ if there is an edge directed from x to y and μ otherwise. If λ = 0 and μ = 1 then we say that it is a mixed Moore graph. It is known that there are unique mixed Moore graphs with parameters ...

متن کامل

Directed Strongly Regular Graphs and Their Codes

Directed Strongly Regular Graphs (DSRG) were introduced by Duval as a generalization of strongly regular graphs (SRG’s) [4]. As observed in [8] a special case of these are the doubly regular tournaments or equivalently, the skew Hadamard matrices. As the latter already lead to many interesting codes [10] it is natural to consider the more general case of codes constructed from the adjacency mat...

متن کامل

Small vertex-transitive directed strongly regular graphs

We consider directed strongly regular graphs de2ned in 1988 by Duval. All such graphs with n vertices, n6 20, having a vertex-transitive automorphism group, are determined with the aid of a computer. As a consequence, we prove the existence of directed strongly regular graphs for three feasible parameter sets listed by Duval. For one parameter set a computer-free proof of the nonexistence is pr...

متن کامل

Representations of directed strongly regular graphs

We develop a theory of representations in Rm for directed strongly regular graphs, which gives a new proof of a nonexistence condition of Jørgensen [8]. We also describe some new constructions.

متن کامل

New Feasibility Conditions for Directed Strongly Regular Graphs

We prove two results for directed strongly regular graphs that have an eigenvalue of multiplicity less than k, the common out-degree of each vertex. The first bounds the size of an independent set, and the second determines an eigenvalue of the subgraph on the out-neighborhood of a vertex. Both lead to new nonexistence results for parameter sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2015

ISSN: 0012-365X

DOI: 10.1016/j.disc.2015.01.013